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SUMMARY 

 

Confidence intervals  have been routinely reported in medical journals since the mid-1980s; however, 

their  interpretation  is  not  well understood among clinical researchers with limited statistical training. 

In this article interpretation of Confidence intervals are clearly explained and supplemented with an 

example for a single sample using binary and continuous outcomes. 

 

INTRODUCTION 
 

In the previous teaching article on ”Population and Sample” (1), It was discussed that the basic idea of 

sampling is to draw inference about the population of all individuals from which the sample is 

drawn. The interest in clinical research is primarily the population, not the sample. For example, 

one might be interested in estimating mean systolic blood pressure measurements (in mmHg) or 

proportion of individuals with type 2 diabetes mellitus (T2DM, as percentage) in a population of 

hypertensive patients. A well chosen sample will contain most of the information about the popula-

tion, hence called representative sample, such that true (valid or unbiased) inferences about the 

population can be made. However, if the sample is not representative of the population, then the 

inferences drawn about the population may be misleading even if the sample size is large and statisti-

cal procedures cannot help to make any adjustment (2). 

 

Statistical inference in medical research often revolves around hypothesis testing and parameter 

estimation. Hypothesis testing, sometimes called null hypothesis significance testing (NHST), re-

fers to the formal statistical procedures used to reject or accept (preferably, fail to reject) a statisti-

cal hypotheses, an assumption about a population parameter. For example, one might be interested to 

test a hypothesis that states “the mean systolic blood pressure measurement (in mmHg) in a certain 

population is 120 mmHg”. On the other hand, parameter estimation refers to the process by which 

inferences about population parameters such as mean or proportions are made, based on information 

obtained from a sample drawn from the population. It is important to underline that estimation 

can also be used, and in fact strongly recommended in most medical journals as opposed to signifi-

cance testing using p-values (2,3). 

 

Both hypothesis testing and parameter estimation require drawing a random sample from the popu-

lation of interest for practical reasons. If the research question involves comparison of two popula-

tions, for example comparison of clinical outcomes such as mean systolic blood pressure measure-

ments (in mmHg) between treated and untreated hypertensive patient populations, the researcher 

needs to draw two different random samples from respective populations. Hence, hypothesis test-

ing in this example involves rejecting or not rejecting the assumption that there is no difference in 

mean systolic blood pressure measurements (in mmHg) between treated and untreated populations. 

Alternatively, this hypothesis can be stated as follows: the difference in the mean systolic blood 

pressure measurements (in mmHg) between the two groups is zero. Detailed discussion of hy-

pothesis testing using p-values and confidence intervals will be covered in the next issue of the Ethio-

pian Medical Journal (EMJ). 
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In the above example, the research interest could be estimation of mean systolic blood pressure 

measurements (in mmHg) in each of the two populations (treated and untreated) or estimation of 

the difference in the mean systolic blood pressure measurements between the two populations, 

hence, estimation of two means or difference in two means, respectively. This procedure of estima-

tion may be expressed using a  p o i n t  estimation or an interval estimation. And a value obtained 

from a point estimation is called point estimate and values obtained from interval estimation is 

called interval estimates. 

 

A point estimate of a population parameter such as population mean or population proportion is 

a single value of the sample statistic, sample mean or sample proportion, respectively. For example, 

the sample mean of systolic blood pressure measurement (in mm Hg) x̄  is a point estimator of the 

population mean of systolic blood pressure measurement (in mm Hg), µ. Similarly, for binary out-

come variables such as presence of T2DM, the sample proportion (of individuals with T2DM) p is 

a point estimator of the population proportion π. The values that the point estimators   and p assumed 

are called point estimates. 

 

On the other hand, an interval estimate is defined by two numbers, between which a population 

parameter is said to lie. In the systolic blood pressure measurement example, a < x̄  < b is an 

interval estimate of the population mean µ, where x̄  is the sample mean systolic blood pressure 

measurement (in mm Hg). The interval estimate can also be expressed as x̄  ± c, where a = x̄-c and 

b = x̄+c are the lower and upper interval limits within which the population mean µ lies with a 

given level of confidence. When this interval is associated with a certain level of confidence, it is 

called confidence interval (we will come back to this later). 

 

Variation between samples 

Theoretically, one can draw several r a n d o m  samples from a d e f i n e d  population. In practice, 

however, researchers make estimation of  parameters  based only on one random sample of a given 

size unless it involves comparison of two or more populations as described before. A well designed 

s imple  random sampling assures that every member in the population has equal chance of being 

included in the sample particularly if one can enumerate every member of the population to con-

struct a sampling frame.  Even in this sampling procedure, series of samples drawn from this popula-

tion will not be identical because of random variation in the samples. Hence, parameter estimates from 

a single sample are subject to uncertainty due to sampling variability (2). This uncertainty in the point 

estimate using one sample can be communicated using interval estimates. Hence, i n  r e s e a r c h  

both point estimates and interval estimates are used in combination. 

 

Whether parameter estimates from a series of samples are close to the truth (unbiasedness or valid-

ity) is determined by how representative the samples are of the population and i t  is less influ-

enced by the size of the sample. On the other hand, the sampling variability, which describes 

how close to each other (precision) the parameter estimates from several samples drawn from a 

population are, is strongly inversely related to sample size and directly related to the amount of 

variation between individuals in the population. The sampling variability decreases with increasing 

sample size or decreasing variation in the population, and increases with decreasing sample size or 

increasing variation in the population. 

 

Note that the true population parameter, for example the mean systolic blood pressure measure-

ment (in mm Hg) µ of medical professionals working in Afar Regional State of Ethiopia, is a fixed 

but unknown quantity. This quantity is estimated from a random sample of size n using sample 

statistic x̄ . These two quantities, the true population parameter µ and sample statistic x̄ , will not 

necessarily be identical. The difference between the sample statistic obtained from random 

sample and used to estimate a population parameter and the true but unknown value of the pa-

rameter is called sampling error. Information on the amount of the sampling error is incorporated 

when intervals estimates are reported compared to point estimates. This is the rationale for using 

confidence interval rather than merely reporting point estimate (2,4). 
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CONFIDENCE INTERVALS 

 
Now one might wonder why  such an interval estimate is called a ”confidence interval”, CI for short, 

often reported as 95% CI and rarely 99% CI. As defined before, an interval estimate is the range of val-

ues which is ”likely” to include the population parameter of interest. But one cannot be 100%” confident” 

or “certain” (note the terms “confidence interval” and “uncertainty”) that estimate from a single r a n -

d o m  sample describes the population parameter precisely. This holds true even with several ran-

dom samples. In other words, the interval estimate would not always include the population pa-

rameter between them. Hence, they should be constructed at a certain level of confidence. With 

serial r ando m samples, some interval estimates would include the population parameter while oth-

ers would miss it. The likelihood for the interval estimate to contain the true population parameter 

is often described as a percentage of confidence such as 95% CI; 95% is the level of confidence set. 

Confidence level is often denoted as 100*(1-á)% where á refers to the significance level (will be dis-

cussed in detail in the next issue on ”Hypothesis testing”) set at 5% for a 95% confidence level. 

 

Theoretically, the statistical explanation of confidence intervals is based on repeated sampling from 

the same population. Assume that one draws 100 random samples using the same sampling method 

from a population (note that 100 is chosen to describe the level of ”confidence” as percentage) and com-

putes interval estimate in each of the 100 samples. This results in 100 individual statistic (i.e. means) 

and their corresponding interval estimates; the true population mean would fall within the intervals 

95% of the time. In other words, out of the 100 intervals estimated, 95 of them would include the 

true population p a r a m e t e r  ( i . e .  mean in our example) and five of them would miss it; 99% 

confidence interval means that 99% of the intervals contain the true population parameter; and so 

on. 

 

Practically, however, researchers rely only on one random sample (and not repeated r a n d o m  sam-

ples) to compute confidence interval for the population p a r a m e t e r .  H ence, the interpretation 

of confidence interval is as follows: the researcher is 95% confident that the true population parame-

ter (i.e. mean in the systolic blood pressure example) will fall within the range of estimated 

interval. In simple terms, the estimated interval from one random sample is one of the 95 intervals 

which contain the true population parameter  (e .g.  mean) and is not one of the five intervals 

which miss the true population parameter (e.g. mean). 

 

Note that a 95% CI does not mean that there is a 95% probability that the interval contains the true 

population parameter. The interval computed from a given random sample either contains the 

true population parameter or it does not; there is no probability associated with it because the 

population parameter is a fixed but unknown quantity. The two limits of a confidence interval are ran-

dom quantities that vary from  one random sample to another random sample of the same size taken 

from the same underlying population. However, the population parameter from which the random sam-

ples are selected is fixed quantity, which is not known to the researcher unless each and every member 

of the population is investigated and the parameter value is determined. 

 

Components of a confidence interval 

A confidence interval consists of three parts: a confidence level, a statistic, and a margin of error. The 

confidence level, 100*(1-α)%, describes the uncertainty of a sampling method and it is the probabil-

ity part of the CI expressed as percentage. It describes the likelihood that a particular sampling 

method will produce a confidence interval that includes the true population parameter; it is not af-

fected by the margin of error but set by design often at 95% meaning that α = 5%. It is important to 

distinguish interval estimates and confidence intervals as they may not be the same; both have a 

margin of error associated with the point estimate as in formula 1 but confidence intervals are al-

ways described using a certain confidence level. Research finding with higher confidence level (say, 

95%) are more convincing to readers than findings with low confidence level (say, 90%). 

sample statistic ± margin of error                                                                      (1)  
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By central limit theorem, the sequence of the 100 sample means computed from the 100 samples (of 

size ≥ 30) conform to a Normal distribution, even if the observations from which they were obtained do 

not (5). The distribution of the 100 sample means is the sampling distribution of the mean and can 

be described using z-distribution (t-distribution if the sample size is < 30 and the population standard 

deviation is unknown) as discussed in the previous teaching article (4). One can estimate mean of the 

100 sample means (which equals the true population mean) and the variation among  the sample  

means. This variation between the sample means is what we call the standard error of the mean in 

case of one sample mean estimation. Note that standard deviation describes the variation of ob-

servations in a single sample of a give size where as standard error describes uncertainty in the 

sample mean in estimating the population mean. The standard error of the sample mean obtained 

from one sample can also be thought of as the estimate of the standard deviation that would be 

obtained from the means of large number of repeated samples (100 samples in our example) drawn 

from that population.  

 

The interval estimate of a confidence interval is defined by the sample statistic and margin of error, the 

range of values above and below the sample statistic that describes the precision of the estimate. 

When the sample size is < 30 and the population standard deviation is unknown, we use t-distribution 

to compute CI for population as; 

                   sample mean ± t-multiplier ∗ standard error                              (2)                                    

In this case the standard error of the sample mean  is estimated using standard deviation of the 

sample and sample size n as   

                                                ± tá/2,n−1 ∗                                                                                                  (3) 

where the ”t-multiplier” which is denoted as tá/2, n−1, depends on the sample size through n-1 (called the 

”degrees of freedom”) and the confidence level 100∗(1 −á)% through á/2. And it can be obtained from a t-

distribution table. 

 

When the population variance is known or the sample size is large (n ≥ 30), we use standard Normal 

distribution (z-value which does not depend on sample size, unlike t-distribution and can be obtained 

from a Z-distribution table) to compute CI for population as; 

                    sample mean ± z-multiplier ∗ standard  error                                                                    (4) 

x    ̄  ± Zα/2 ∗                                                                                             (5) 

                            x  ̄  ± Zá/2 ∗                                                                                         (6) 

In this case the standard error of the sample mean  is estimated as in formula 5 when n ≥ 30 and 

population variance is unknown or as in formula 6 when population variance is known. 

 

For binary outcomes such as prevalence of T2DM, the parameter estimates are population propor-

tions and the CI for population proportion. In the previous teaching article on Normal distribution 

(4), we described that in repeated sampling, the mean of the sample proportions would be ap-

proximated by a Normal distribution, hence we use z-values in formula 8. If r is the observed 

number of individuals with T2DM in a random sample of size n ,  then the estimated proportion is p = 

r/n and the proportion of individuals who do not have T2DM is q=1-p. 

The standard error of the sample proportion p is estimated using the sample proportion itself and 

sample size n as; 

                                                                                                       (7) 

And the 100(1-α)% confidence interval for the population proportion is computed using the following 

formula, 

p ± Zα/2 ∗  = p ± Zα/2 ∗                                                                                                        (8) 

  



 89 

The values of Zα/2 can be found from statistical tables; for a 95% confidence interval Zα/2 is 1.96. Note 

that formula 8 is based on an approximation and should not be used for very low observed propor-

tions. As a rule of thumb neither r nor n-r should be less than 5. When these assumptions are vio-

lated, there are other ways to compute confidence intervals for proportions (2,6). 

 

Confidence intervals are preferred to point estimates for several reasons: they are readily inter-

pretable, linked to familiar statistical significance tests, a n d  a l s o  p r o v i d e  m a g n i t u d e  o f  

t h e  e f f e c t  can encourage meta-analytic thinking, and give information about precision (3). 

 

When comparing two populations, for example with respect to outcome, confidence intervals convey 

only the effects of sampling variation on the estimated means or proportions and their differences 

and cannot control for other non-sampling errors such as biases introduce because of in study design, 

during the conduct, or analysis. With large samples, you know the mean with much more precision 

than you do with a small sample, so the confidence interval is quite narrow when computed from 

a large sample. A narrow CI justifies the confidence we have in the reasonably precise knowl-

edge about the effect under study. 

 

Worked-out examples 

I - Confidence interval for means 

Nigussie et al. (7)  conducted a case-control study, recruiting study participants using systematic ran-

dom sampling, in Tikur Anbessa Specialized Hospital from Jun 2013 to March 2014 to determine 

serum levels of β-hCG in normotensive and preeclamptic pregnant women. Cases (n=38) were 

preeclamptic pregnant women and controls (n=38) were normotensive pregnant women identified 

by using their blood pressure level from the mother’s record card at ANC clinic. Characteristics of 

preeclampsia and control s tudy part icipants are summarized i n  Table 1 of the article (7). They 

reported higher level of Serum β-hCG in the preeclamptic group (34439.18±28223.67mIU/ml) than 

the normal group (20582.00± 17588.31 mIU/ml), and the mean difference was statistically signifi-

cant (p=0.013). Note that the authors reported only point estimates (sample means) with standard 

deviations in each group. They did not compute standard errors of the sample means and confidence 

intervals. 

 

For this exercise, we will focus on the point and interval estimates for both groups without com-

paring them. Since the outcome variable, serum β-hCG level, is measured on a continuous scale (in 

mIU/ml), they computed the mean serum β-hCG level in cases and controls to be 34439.18 and 

20582.00mIU/ml. If the authors were to take many repeated samples (say 100) from t h e  p o p u -

l a t i o n s  t h a t  each group is generated, compute the means, the mean of the 100 sample means 

would conform to a normal distribution since n ≥ 30, using the central limit theorem. Hence we can 

use z-table to obtain a multiplier for the standard error then to compute confidence intervals.  

First, the standard errors for the mean serum β-hCG level in the two samples can be calculated using 

the formula  where S is the standard deviation of the observations in each sample, hence, the 

SE is = 4578.49 in the sample of cases and  = 2553.21 in the sample 

of controls  

Then, the margin of error for the sample mean is computing using z -value of 1.96 (for a confi-

dence level of 95%) in each sample. Hence, 1.96*SE = 1.96*4578.49 = 8973.84 in cases and 

1.96*2553.21 = 5004.29 in controls. 

Finally, the 95% CI for the population means is computed using formula 4/5 as 34439.18 ± 8973.84 

(25465.36mIU/ml, 43413.04mIU/ml) in cases and 20582.00 ± 5004.29 (15577.11mIU/ml, 

25586.29mIU/ml) in controls, respectively. 

In this particular study, the objective was to determine serum β-hCG level in the two groups and not 

to compare the two groups or test the hypothesis that the mean serum β-hCG level is not different be-

tween normotensive and preeclamptic pregnant women. However, they performed comparison and 

significance testing using p-value; they concluded that serum β-hCG level is higher in preeclamptic 

pregnant women compared t o  normotensive pregnant women and this was statistically significant 

(p=0.013). . 
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The ideal procedure would be to compute the mean difference in the two groups, construct 95% CI 

for the difference of the two population means and conduct hypothesis testing using confidence inter-

vals rather than p-values. We will discuss in detail in the next issue on hypothesis testing. 

 

II - Confidence interval for proportions 

Woldetsadik and Kumie (8) conducted a cross-sectional study to determine the prevalence of 

symptoms of asthma and associated factors among primary school children in Addis Ababa. They 

randomly selected a total of 20 primary schools in Addis Ababa. Using questionnaire adapted 

from International Study of Asthma and Allergies in Childhood, they collected data from total of 

1,259 primary school children aged 6-7 years. The questionnaires were completed by parents/

guardians of the children. Information collected include childhood wheeze, wheeze in the past 12 

months, ever diagnosed asthma, exercise induced wheeze in the past 12 months, and dry cough at 

night in the past 12 months. They reported the prevalence of different symptoms in Table 1, For this 

example we consider diagnosed asthma (50 out of 1,259 children had diagnosed asthma), the preva-

lence was reported to be 4.1% (95% CI, 2.98% to 5.22%). 

 

First, prevalence is calculated by dividing the number of children diagnosed with asthma (n1 = 50) 

by the total number of children included in the study (n = 1,259). This step resulted in the point es-

timate of 4.1%. To account for uncertainty with this single sample, they calculated 95% CI (they 

set confidence level at 95%  hence assumed 5% error or significance level). 

The standard error for proportion p is computed (using formula 7) as follows: 

 

                             
 

Using z-value of 1.96 for 95% confidence level, the margin of error i s  1.96*0.006 = 0.012. Us-

ing this value, the 95% CI for the population proportion is computed using formula 1, 

 

= sample statistic ±margin of error (z-multiplier ∗ standard error) = 0.041± 0.012 

 

This results in a point estimate of 0.041 or 4.1% and 95% confidence interval of 0.0290 to 0.0530 or  

2.9% to 5.3%.  These figures are similar to the prevalence (and 95%CI) reported by the authors except 

some rounding e r r o r s  i n t r o d u c e d  during calculation.  
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