

Amsalu Bekel, Tewodros Haile, Amha Mekekasha, Oumer Fuad, Winters Muttamba, Levi Mugenyi, Wincey Katagira, George Nyale, Njira Lugogo, William Worodria, Hellen T. Aanyu, Moses Joloba, Corina de Jong, Fred Makumbi, Thys van der Molen, Jeremiah Chakaya, Bruce J Kirenga, Getenet Yimer. *Ethiop Med J*, 2021, Vol. 59, No. 2

ORIGINAL ARTICLE

CHARACTERIZATION OF ASTHMA AND ITS DETERMINANTS IN ETHIOPIA: PART OF THE AFRICAN SEVERE ASTHMA PROJECT

Amsalu Bekel MD¹, Tewodros Haile MD¹, Amha Mekekasha MD, MSC¹ Oumer Fuad MSC¹, Winters Muttamba MBChB, MPH², Levi Mugenyi PhD² Wincey Katagira MBChB, MMed², George Nyale MBChB, MMed³, Njira Lugogo MD⁴, William Worodria MBChB, MMed, PhD⁵, Hellen T. Aanyu MBChB, MMed⁵ Moses Joloba MBChB, MS, PhD⁶, Corina de Jong PhD⁷, Fred Makumbi PhD⁸, Thys van der Molen MD, PhD⁹, Jeremiah Chakaya MBChB, MMed¹⁰, Bruce J Kirenga MBChB, MMed^{2,11}, Getenet Yimer MD, PhD¹²

ABSTRACT

Introduction: Asthma is a major public health problem globally affecting 339 million people with 300,000 annual deaths. African Severe Asthma Program was a multi-country prospective cohort study designed to characterize severe asthma in three African countries, Ethiopia, Uganda and Kenya. In this study, we describe the baseline characteristics and disease severity among asthmatics enrolled in the Ethiopia site of African Severe Asthma Program.

Methods: Asthmatics seen at Tikur Anbessa Specialized Hospital from August 2016 to May 2018 were studied. Asthma was diagnosed based on symptoms and spirometry. Baseline demographic and clinical data were collected using a structured questionnaire. Standardized research tools were used to assess asthma severity, asthma control and asthma quality of life.

Results: A total of 419 asthmatic patients were enrolled in the study; the mean age for the group was 52 ± 8 years and 58.2 % were female. The majority of the participants, 365 (87.2%), had a prior diagnosis of asthma with a median (IQR) age at first diagnosis of 29 (IQR: 22 - 36) years. A family history of asthma was present in 149 (35.6%) subjects. Current or previous cigarette smoking was reported in 8.6% of the participants. Overall, 93.8% of the participants reported uncontrolled asthma symptoms ($ACQ > 1.5$). More than half of the patients, had severe persistent asthma and 35% presented with one or more comorbidities.

Conclusions: In Ethiopia, asthmatics presenting to a tertiary care hospital were characterized as predominantly female with late onset disease, poor control, and associated comorbidities.

Key Words: Asthma, Characteristics, determinants and Severe

INTRODUCTION

Asthma is a common chronic disease that is estimated to affect as many as 339 million people worldwide and cause over 300,000 deaths each year(1). In addition, according to the 2015 Global Burden of Diseases Report on Asthma, 22 million disability-adjusted life years (DALYs) are annually lost to asthma (2). In Africa, the prevalence of asthma is approximately 119 million or 13.8% of the population. The rates are higher in urban compared to rural areas and are increasing over time (3), possibly reflecting greater exposure to environmental risk factors, increased cigarette smoking, and a more westernized affluent lifestyle (4-8).

Globally, 5-10% of patients have severe disease (9-11). However, control of asthma (usually defined as minimal or no symptoms, normal activities and sleep, and optimal pulmonary function) may be achieved in the majority of patients (12-14).

Lack of asthma control may be due to a number of factors including an incorrect diagnosis, under treatment, ongoing exposure to sensitizing agents, and an unresponsive underlying inflammatory process (15-18).

Finally, various comorbid conditions are increasingly recognized as frequent contributors to uncontrolled asthma. The identification of comorbidities is now recognized as an integral part of the core management of asthma (15, 16).

In Ethiopia, 2.5 million adults and children (2.3% of the population) have asthma (19) and an increasing prevalence of disease has resulted in significant public health challenges (20-22). Little is still known about the characteristics of these asthmatics and the control and severity of their asthma, which is information important to lessen the country's burden of disease.

¹Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia. ²Makerere University Lung Institute, Kampala Uganda. ³Kenyatta National Hospital, Nairobi Kenya. ⁴Department of Internal Medicine, Michigan Medicine, University of Michigan. ⁵Mulago Hospital, Kampala Uganda. ⁶Department of Medical Microbiology, Makerere University, Kampala Uganda. ⁷School of Public Health, Makerere University, Kampala Uganda. ⁸GRIAC-Primary Care, department of General Practice and Elderly Care, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands. ¹⁰Kenya Association of Physicians against TB and Lung Diseases (KAPTLD), Nairobi Kenya. ¹¹Department of Medicine, Makerere University, Kampala Uganda. ¹²Global One Health Initiative, Office of International Affairs, The Ohio State University, Addis Ababa, Ethiopia.

*Corresponding Author E-mail: amsalubekel2016@gmail.com

This study was undertaken to describe the baseline characteristics, disease control, and severity among asthmatics enrolled in the Ethiopian site of the African Severe Asthma Program (ASAP), a multi-country prospective cohort study designed to characterize severe asthma in three African countries, Ethiopia, Uganda and Kenya.

METHODS

Study design and setting: This study was a prospective observational cohort study designed to investigate the prevalence, determinants, and impact of severe asthma in Ethiopia as part of ASAP (23). All enrolled asthmatics were recruited from chest clinic of Tikur Anbessa Specialized Hospital (TASH), the largest public tertiary medical center in Ethiopia.

Study participants:

Asthmatics were required to have at least one of the following: 1) more than one characteristic respiratory symptom, 2) physician diagnosed asthma, 3) use of asthma medications with improvement in symptoms, 4) history of wheezing in the past 12 months, and 5) pre-bronchodilator Forced Expiratory Volume in One second (FEV₁) ratio <0.70% and bronchodilator reversibility ≥12% and ≥200 mL (3). The diagnosis of asthma was confirmed by an expert pulmonologist. All asthmatics presenting to TASH over the age of 12 years were recruited. Subjects were excluded for the following reasons: 1).

contra-indications to spirometry testing, 2) a known diagnosis of an alternative lung disease (e.g. chronic obstructive pulmonary disease (COPD), bronchiectasis, pulmonary fibrosis and tuberculosis (TB), 3) age over 70 years, 4) pregnancy determined by self-reported last menstrual period, and fixed airflow obstruction on spirometry as defined as post-bronchodilator FEV₁/FVC ratio <0.70. Eligible patients were consecutively enrolled until the sample size was attained. Subjects were seen monthly for the first six months and then at 9 and 12 months. GINA based stepwise therapy was utilized to adjust treatment; all asthma medications were provided by the project. The study enrolled participants from August 2016 to May 2018.

Questionnaires: All eligible patients who provided written informed consent underwent a respiratory focused clinical evaluation using a pre-developed case report form (CRF) to collect data on socio-demographics, respiratory symptoms, vital signs, respiratory system signs, exposures to indoor and outdoor pollutants, known asthma triggers, tobacco smoking, psychosocial issues, and comorbidities (allergies, GERD). Asthma control was assessed using the Asthma Control Questionnaire (ACQ) (24), while the National Heart, Lung and Blood Institute (NHLBI) Expert Panel Report (EPR3) guidelines (25), were used for asthma severity grading.

Depression was assessed and graded using the Patient Health Questionnaire-9 (PHQ-9) (26) and quality of life was assessed using the Asthma Quality of Life Questionnaire (AQoL) (27). We also assessed work and activity impairment with the Work Productivity and Activity Impairment Due to Asthma tool (WPAI: asthma) (28).

Spirometry: Spirometry was performed according to American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines (29) using a Pneumotrac® spirometer with Spirotrac® V software (Vitalograph Ltd., Buckingham, United Kingdom). To achieve uniformity, we used the National Health and Nutrition Examination Survey (NHANES) references values for %predicted FEV₁ and %predicted FVC as there are no appropriate African reference values to date (30). Pre- and post-bronchodilator spirometry was performed for only those with FEV₁ ratio <0.70. We used 4 doses of inhaled salbutamol (400mcg) separated by one minute and repeated spirometry after 15 minutes.

Skin prick test (SPT): SPT was performed by trained nurse and interpreted according to published international guidelines (31). Common aero- and food allergens were preselected based on their published occurrence in African settings and included; house dust mite mix, soy bean, Blomia Tropicalis, Bermuda Grass (Cynodon Dactylon), Mold Mix IV, Aspergillus Fumigatus, dog epithelia (Canis Fam), cat epithelia (Felis Domesticus), German cockroach (Blat Germ), egg white, cow milk, and peanut (Arachys Hypogaea) (32).

Definitions

Uncontrolled asthma was defined as an ACQ score of ≥1.5 (24). Asthma exacerbation was defined according to the ATS/ERS definition as “events characterized by a change from the patient’s previous status” (33). We considered only exacerbations that required a patient to either visit a health facility or to be hospitalized (i.e. moderate to severe exacerbations) as recommended by the ATS/ERS guidelines (33,34). Allergic sensitization was defined as having at least one positive allergen on the ASAP allergen panel of 12 allergens as previously defined in other studies (35). Depression was graded by the PHQ-9 Questionnaire as follows: 0-4 none, 5-9 mild, 10-14 moderate, 15-19 moderately severe, 20-27 severe (26). Moderate to severe depression included everyone with scores ≥10.

Statistical analysis

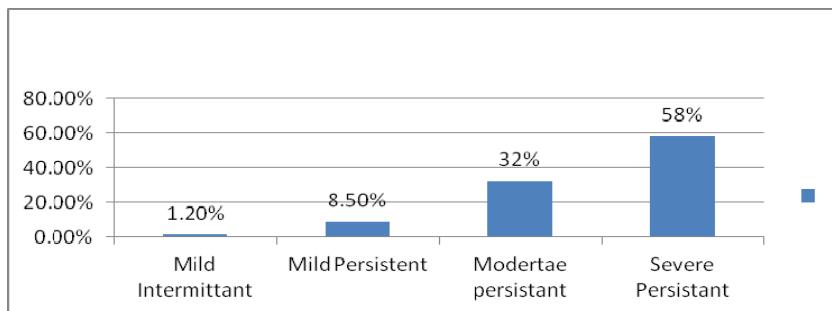
Descriptive statistics were used to summarize enrolled patients’ characteristics. For categorical variables, we present frequencies and percentages. For continuous variables, median and the interquartile ranges are presented. All analyses were done using STATA version 14 software.

Ethical considerations

Ethics approval was obtained from College of Health Sciences Institutional review board (IRB) at Addis Ababa University, Ethiopia. All patients provided a written informed consent. Patients below 18 years provided assent while their parents/legal guardians gave written consent.

RESULTS

There were a total of 419 asthmatics enrolled in the study. Socio-demographic characteristics are shown in Table 1. The mean \pm SD age for the group was 52 \pm 8 years with a range of 15-70 years. Subjects 55-64 years of age (28.2%) were most affected followed by those 45-54 years, 26.3%; the least affected age group included participants less than 25 years of age, 4.1%.


Table 1: Socio-demographic characteristics of study participants, Tikur Anbessa Specialized Hospital, 2016-18

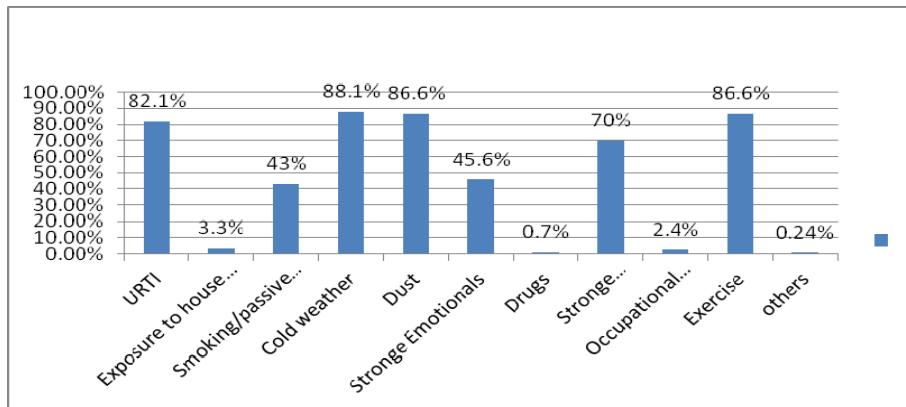
Socio-demographic Characteristics	Frequency (%)
Age in Year	
<15	6 (1.4)
15-24	11 (2.6)
25-34	31 (7.4)
35-44	70 (16.7)
45-54	110 (26.3)
55-64	118 (28.2)
65+	73 (17.4)
Mean Age	52 Years
Median age of onset of asthma(IQR)	29(22 - 36) years
Gender	
Male	175 (41.8)
Female	244 (58.2%)
Marital status	
Single	42 (10.1)
Married	279 (66.91)
Divorced	32 (7.8)
Widowed	56 (13.4)
Family History of Asthma	
Yes	149(35.6)
No	255(61.0)
I don't know	14(3.4)
Smoking History	
Current /Former smoker	36(8.6%)
Second hand smoke	23(5.5)
Never Smoked	381(91.4)
Biomass Exposure history	
Yes	304(72.6)
No	115(27.5)

The majority of subjects were female 244 (58.2%). Most were married 280 (66.9%) with 56 (13.4%) widowed and 42 (10.1%) single. The majority, 365 (87.2%) had a prior diagnosis of asthma with the median (IQR) age at first asthma diagnosis being 29(22-36) years. A family history of asthma was present in 149 (35.6%) of subjects.

Current and previous history of smoking was reported by 36 (8.6%) participants and secondhand smoking was reported by 23 (5.5%) subjects. A majority of study participants 304 (72.6%) had a history of biomass exposure.

The majority of the patients 243 (58.0%) had severe persistent asthma; 134 (32.0%) had moderate persistent asthma, 36 (0.6%) had mild persistent asthma, and 5 (1.2%) had mild intermittent asthma (Figure 1). Approximately 90% of study subjects had moderate to severe asthma. The most common respiratory symptoms were cough (189, 45.1%) and wheeze (158, 37.7%). On average, study participants used systemic steroids for asthma control three times per year and had at least one yearly exacerbation and emergency room visit. A large number of asthmatics, 196 (47.0%), had three or more exacerbations in one year; a smaller number, 103 (24.6%), had at least one hospital admission per year.

Figure 1: Asthma classification based on severity among study participants, Tikur Anbessa Specialized Hospital, 2016-18.


Medication use is shown in Table 2. Salbutamol MDI was the most common medication used (56.6%) followed by theophylline/aminophylline tablets (23.2%), oral steroids (22.7%), injectable steroids (13.4%), inhaled corticosteroid/long-acting beta agonist combination MDI (12.2%), inhaled steroid alone (Beclomethasone) (12.2%), Salbutamol tablets/syrup (11%).

A small number of subjects, 46 (11%) were not using any asthma medication despite their diagnosis. Poor asthma control was associated with use of salbutamol in any form ($P=0.048$) and use of theophylline as a controller medication ($P=0.01$).

Table 2: Asthma medications use among study participants, Tikur Anbessa Specialized Hospital, 2016-18

Medication use	Frequency (%)
Currently on the following medications:	N = 419 100%
Salbutamol tabs/syrup	46 11.0
Salbutamol inhaler	237 56.6
Theophylline/Aminophylline tablets	97 23.2
Theophylline /Aminophylline injections	30 7.2
Nebulized salbutamol	2 0.5
Nebulized salbutamol/ipratropium	3 0.7
Nebulized steroid	2 0.5
Oral steroids such as prednisolone, dexamethasone	95 22.7
Injectable steroids such as hydrocortisone, dexamethasone	7 1.7
Inhaled steroids such as beclomethasone inhaler	51 12.2
Combination inhalers (steroids and long acting beta agonists)	56 13.4
Combination inhaler(salbutamol/ipratropium)	1 0.2
Leukotriene modifiers such as montelukast and zafirlukast	1 0.2
On systemic steroids (Oral & injectable steroids)	95 22.7
Not taking any asthma medication	46 11.0

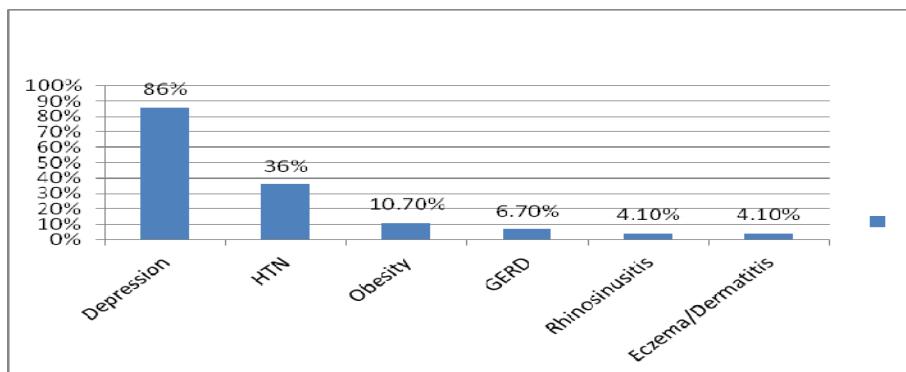

Common asthma triggers are shown in Figure 2. Cold weather (88.1%), dust (86.6%), upper respiratory infections (82.1%), and strong smells and perfumes (70%) were the most frequently reported triggers.

Figure 2: Reported common asthma triggers among study participants, Tikur Anbessa Specialized Hospital, 2016-18

A total of 147 (35%) of subjects had at least one comorbidity (Figure 3). Depression (86%) was the most common finding; minimal, mild, and moderate/severe depression were seen in 62.5%, 17%, and 4% subjects, respectively. Other less common comorbidities included: Hypertension (36%), obesity (10.7%),

GERD (7.6%), rhinosinusitis (4.1%), and eczema/dermatitis (4.1%). The assessment of quality of life based on quality of life using Asthma Quality of Life Questionnaire (AQLQ) was poor in uncontrolled asthma than controlled Asthma ($P=0.000$)

Figure 3: Comorbidities among study participants, Tikur Anbessa Specialized Hospital, 2016-18.

DISCUSSION

This study is the largest comprehensive evaluation of the characteristics of asthmatics living in Ethiopia. Spirometry was performed on all subjects and the diagnosis of asthma was confirmed using strict criteria. Many of our results are in concert with other published research. We found a predominance of older female asthmatics with late onset disease and infrequent atopy, as measured by skin prick testing. This can be explained by improved life expectancy, urbanization, increases rate of obesity and increased rate of air pollution in our population (34, 37). Studies from the United States and Europe have found similar findings; adult-onset asthma and adult-onset phenotypes were associated with factors such as female gender, obesity, occupational exposure, rhinitis, respiratory infections, smoking, stressful life events, and low level of lung function (38-41).

Asthmatics in this study appear to have more severe disease than reported in other studies from high resource countries (42-44).

A majority of the study patients (90%) had moderate to severe asthma and reported frequent respiratory symptoms, asthma exacerbations, use of systemic steroids, and hospital admissions.

In addition, 393 (93.8%) of the group reported uncontrolled asthma symptoms ($ACQ > 1$) despite reporting high medication adherence. The number of asthma exacerbation was more in uncontrolled group than controlled asthma group ($P=0.007$). The percent of uncontrolled asthma was higher than in studies from high resources countries (45, 46) but in keeping with other research done in Africa (47-54-) and a smaller study done in Ethiopia (55).

This is also reflected by poor quality of life based on quality of life assessment using Asthma Quality of Life Questionnaire (AQoL) ($P=0.000$). Several factors may explain the observed disease severity and poor asthma control. In our study, short acting beta agonists served as the mainstay of treatment; only 25% were on proper controller medications. Poor asthma control was associated with use of salbutamol of any form and use of theophylline as a controller medication.

Previous studies done in Ethiopia found that the cost of inhaled corticosteroids and limited access to this class of medications played a critical role in under-treatment of asthma; our findings are in concert with those results (56-58). Also, improper inhaler technique, fear of inhaler use, and physician fear of unaffordability of inhaled ICS to prescribe for their patients may have also contributed to the observed poor asthma control (55-60). In addition, many of our asthmatics came to medical attention at a later stage of disease which reflects the health seeking behavior of the population in Ethiopia (61, 62). Development of national guidelines, additional education of patients and physicians on asthma and its proper management, and the availability and affordability of controller medications are necessary if asthma control is to improve in Ethiopia.

The prevalence of comorbidities in those with severe asthma was high in our study, as in others (63-65) and may also help explain the severity of disease seen. However, a more unique observation was the high rate of depression in our analysis, possibly reflecting impaired quality of life due to poor asthma control. Further investigations are needed to confirm this finding.

REFERENCES

1. Asher I, Billo N Bissell K, et al. The Global Asthma Report 2018. Auckland, New Zealand: Global Asthma Network, 2018. www.globalasthmanetwork.org.
2. Christopher J L Murray. Global, regional, and national deaths, prevalence, disability adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet Respir Med*. 2017;5(9):691–706. Authors???
3. Adelove D, Chan KY, Rudan I, Campbell H. An estimate of asthma prevalence in Africa: a systematic analysis. *Croat Med J* 2013; 54(6):519-31.
4. Tefereedgn EY, Ayana AM. Prevalence of asthma and its association with daily habits in Jimma Town, Ethiopia. *Open J Asthma*. 2018;2(1):011–7. <https://doi.org/10.17352/oja.000009>.
5. Wjst M, Boakye D. Asthma in Africa. *PLoS Med*. 2007;4(2):e7203–5. <https://doi.org/10.1371/journal.pmed.0040072>.
6. Korinan F, Fanta DF. Asthmatic patients on follow-up at chest clinic of Jimma University. *Indo Am J Pharm Res*. 2016;6:7089–97.
7. Sharma S, Sood M, Sood A. Environmental risk factors in relation to childhood asthma in rural area. *Curr Pediatr Res*. 2011;15(1):29–32.

Unlike other studies, a history of rhinosinusitis and eczema was very low likely reflecting the infrequent presence of atopic asthma.

Conclusions

In Ethiopia, asthmatics presenting to a tertiary care hospital are characterized as predominantly female with late onset disease, a strong family history, minimal atopy, and limited exposure to cigarette smoke. In addition, there is a high percent of uncontrolled, moderate/severe disease associated with one or more comorbidities. Development of national guidelines, patient and physician education on asthma and its management, and increased availability and affordability of controller medications are urgently needed.

ACKNOWLEDGEMENTS

We are grateful to the patients who participated in African Severe Asthma Project (ASAP) study in Ethiopian. We would like to thank Tikur Anbessa Specialized Hospital, Addis Ababa University for allowing us to use the premises for the study. We would like to thank the study team and spirometry technicians for their hard work in data collection and pre and post lung function measurements. Last but not least we thank our funder, GSK Africa NCD Open Lab for sponsoring this project

Funding:

Funding was provided by GSK Africa NCD Open Lab.

8. Elfaki NK, Shibly AY. Risk factors associated with asthma among Saudi adults in Najran. *J Clin Respir Dis Care*. 2017. <https://doi.org/10.4172/2472-1247.10001> 33.
9. Hekking WP, Wener RR, Amelink M, et al. The Prevalence of severe Asthma. *J Allergy Clin Immunol* 2014; Volume 350, Number 4. <http://dx.doi.org/10.1016/j.jaci.2014.08.042>
10. Busse WW, Banks-Schlegel S, Wenzel SE. Pathophysiology of Severe Asthma. *J Allergy Clin Immunol* 2000; 106:1033-42
11. O'Byrne PM, Naji N, Gauvreau GM. Severe asthma future treatment. *Clin Exp Allergy* 2012; 42:706-11
12. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2020. Available from: www.ginasthma.org
13. Humbert M, Holgate S, Boulet LP, Bousquet J. Asthma control or severity: that is the question. *Allergy* 2007; 62: 95–101.
14. Bateman ED, Boushey HA, Bousquet J, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. *Am J Respir Crit Care Med* 2004; 170: 836–844.
15. American Thoracic Society, Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. *Am J Respir Crit Care Med* 2000; 162: 2341–2351.
16. Chanez P, Wenzel SE, Anderson GP, et al. Severe asthma in adults: what are the important questions? *J Allergy Clin Immunol* 2007; 119: 1337–1348.
17. Boulet L, Becker A, Bowie D, et al. Implementing practice guidelines: a workshop on guidelines dissemination and implementation with a focus on asthma and COPD. *Can Respir J* 2006; 13: Suppl. A, 5–47.
18. Chapman KR, Boulet LP, Rea RM, Franssen E. Suboptimal asthma control: prevalence, detection and consequences in general practice. *Eur Respir J* 2008; 31: 320–325.
19. Ellwood P, Asher MI, Beasley R, Layton TO, Stewart AW. International Study of Asthma and Allergies in Childhood, Phase Three Data, ISAAC International Data Centre, Auckland, New Zealand, July 2000. Available from: www.isaac.auckland.ac.nz.
20. Wjst M, Boakye D. Asthma in Africa. *PLoS Med* 2007; 4:e72.
21. Shine S, Muhamud S, Demelash A. Prevalence and associated factors of bronchial asthma among adult patients in Debre Berhan Referral Hospital, Ethiopia 2018: a cross-sectional study. Shine et al. *BMC Res Notes* (2019) 12:608 <https://doi.org/10.1186/s13104-019-4670-9>
22. Demissie M, Kumie A. Prevalence of symptom of Asthma and Associated factors among primary school children in Addis Ababa. *Ethiop Med J*, 2018; . 56 (. 4): Pages
23. Kirenga B, Chakaya J, Yimer G et al. Phenotypic characteristics and asthma severity in an East African cohort of adults and adolescents with asthma: findings from the African severe asthma project. *BMJ Open Resp Res* 2020; 7:e000484. doi:10.1136/bmjresp-2019-000484
24. Juniper, E.; O'byrne, P.; Guyatt, G.; Ferrie, P.; King, D., Development and validation of a questionnaire to measure asthma control. *European Respiratory Journal* 1999; 14 (4):, 902-907
25. National Heart, Lung and Blood Institute, Expert panel report 3 (EPR3): guidelines for the diagnosis and management of asthma. <http://www.nhlbi.nih.gov/guidelines/asthma/> 2007.
26. Kroenke, K.; Spitzer, R. L.; Williams, J. B., The PHQ-9: validity of a brief depression severity measure. *Journal of general internal medicine* 2001; 16(9): 606-613.
27. Juniper, E. F.; Guyatt, G.; Epstein, R.; Ferrie, P. J.; Jaeschke, R.; Hiller, T. K., Evaluation of impairment of health related quality of life in asthma: development of a questionnaire for use in clinical trials. *Thorax* 1992, 47, (2), 76-83.
28. Reilly, M. C.; Zbrozek, A. S.; Dukes, E. M., The validity and reproducibility of a work productivity and activity impairment instrument. *Pharmacoeconomics* 1993, 4, (5), 353-365
29. Miller, M. R.; Hankinson, J.; Brusasco, V. et al. Standardisation of spirometry. *Eur Respir J* 2005, 26, (2), 319-38.
30. Ford, E. S., The epidemiology of obesity and asthma. *Journal of allergy and clinical immunology* 2005, 115, (5), 897-909.
31. Dreborg, S., The skin prick test in the diagnosis of atopic allergy. *Journal of the American Academy of Dermatology* 1989, 21, (4), 820-821.
32. Deschildre, A., [Allergens causing respiratory allergy: the aeroallergens]. *Arch Pediatr* 1999, 6, (1), 48S-54S.
33. Reddel, H. K.; Taylor, D. R.; Bateman et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. *American journal of respiratory and critical care medicine* 2009, 180, (1), 59-99

34. Schatz, M.; Meckley, L. M.; Kim, M.; Stockwell, B. T.; Castro, M., Asthma exacerbation rates in adults are unchanged over a 5-year period despite high-intensity therapy. *The Journal of Allergy and Clinical Immunology: In Practice* 2014, 2, (5), 570-574. e1.

35. Owens, L.; Laing, I. A.; Zhang, G.; Turner, S.; Le Souëf, P. N., Prevalence of allergic sensitization, hay fever, eczema, and asthma in a longitudinal birth cohort. *Journal of asthma and allergy* 2018, 11, 173

36. Hirano T, Matsunaga K. Review article, Late-onset asthma: current perspectives. *Journal of Asthma and Allergy* 2018;11 19–27. Open Access Full Text Articlehttp://dx.doi.org/10.2147/JAA.S125948

37. Woo-Jung Song, Gray W.K.Wong. Paradigms and Perspectives. Changing trends and challenges in the management of asthma in Asia. *J Allergy Clin Immunol* 2017;140:1272-4

38. Sood A, Qualls C, Schuyler M et al., “Adult-onset asthma becomes the dominant phenotype among women by age 40 years :the longitudinal CARDIA study,” *Annals of the American Thoracic Society*. 2013; 10 (3): 188–197.

39. de Nijs SB, Venekamp LN, Bel EH, Adult-onset asthma: is it really different? *European Respiratory Review*. 2013; . 22 (127): .44–52.

40. Wenzel SE., Asthma phenotypes: the evolution from clinical to molecular approaches. *Nature Medicine*: 2012;.18 (.5): 716– 725

41. Ilmarinen P, Tuomisto LE, . Kankaanranta H “Phenotypes, risk factors, and mechanisms of adult -onset asthma,” *Mediators of Inflammation*, 2015;2015:514868. doi: 10.1155/2015/514868

42. Antonicelli L, Bucca C, Neri M, De Benedetto F, Sabbatani P, Bonifazi F, Eichler HG, Zhang Q, Yin DD. Asthma severity and medical resource utilization *Eur Respir J* 2004; 23: 723.

43. Serra-Batles J, Plaza V, Morejon E, Comella A, Brugues J. Costs of asthma according to the degree of severity. *Eur Respir J* 1998;12:1322–1326.

44. Godard P, Chanez P, Siraudin L, Nicoloyannis N, Duru G. Costs of asthma are correlated with severity: a 1-yr prospective study. *Eur Respir J* 2002;19:61–67.

45. Vermeire PA, Rabe KF, Soriano JB, Maier WC. Asthma control and differences in management practices across seven European countries. *Respir Med*. 2002, Volume 96, Issue 3, March 2002, Pages 142-149.

46. Wang E, Michael E. Wechsler et al. Characterization of severe asthma worldwide: data from the International 4 Severe Asthma Registry (ISAR). Year, volume and pages

47. Price D, Fletcher M, Van der Molen T. Asthma control and management in 8,000 European patients: the REcognise Asthma and LInk to Symptoms and Experience (REALISE) survey. *Prim Care Respir Med*. 2014. <https://doi.org/10.1038/npjpcrm.2014>.

48. Demoly P, Annunziata K, Gubba E, Adamek A. Repeated cross-sectional survey of patient-reported asthma control in Europe in the past 5 years. *Eur Respir Rev*. 2012;21(123):66–74.

49. Cazzoletti L, Marcon A, Janson C, et al. Asthma control in Europe: a realworld evaluation based on an international population-based study. *J Allergy Clin Immunol*. 2007;120(6):1360–7.

50. Mintz M, Gilsenan AW, Bui CL, et al. Assessment of asthma control in primary care. *Curr Med Res and Opin*. 2009;25(10):2523–31.

51. Philip M, Renee JG, Sean E, et al. A retrospective randomized study of asthma control in the US: results of the CHARIOT study. *Curr Med Res Opin*. 2008;24(12):3443–52.

52. Reddel HK, Sawyer SM, Everett PW, Flood PV, Peters MJ. Asthma control in Australia: a cross-sectional web-based survey in a nationally representative population. *Med J Aust*. 2015;202(9):492–7.

53. Boonsawat W, Boonsawat W, Thinkhamrop B. Evaluation of asthma control by inhale corticosteroids in general practice in Thailand. *Asian Pac J Allergy Immunol*. 2015;33(1):21–5.

54. Christopher KW, Teresita SG, You-Young K, et al. Asthma control in the Asia-Pacific region: the asthma insights and reality in Asia-Pacific study. *J of Allergy and Clin Immunol*. 2003;111(2):263–8.

55. Tewodros HG, Amsalu BB, Abebe SM et al.. Level of asthma control and risk factors for poor asthma control among clinic patients seen at a Referral Hospital in Addis Ababa, Ethiopia. *BMC Res Notes* (2017) 10:558 DOI 10.1186/s13104-017-2887-z

56. Yohanes Ayele, Ephrem Engidawork, Tola Bayisa. Assessment of inhaled corticosteroids use and associated factors among asthmatic patients attending Tikur Anbessa Specialized Hospital, Ethiopia. *BMC Res Notes* (2017) 10:314 DOI 10.1186/s13104-017-2645-2

57. Tadesse M. Abegaz, Efrata A. Shegema, N. F. Gessie, et.al. Barriers to and competency with the use of metered dose inhaler and its impact on disease control among adult asthmatic patients in Ethiopia. *BMC Pulmonary Medicine* (2020) 20:48 <https://doi.org/10.1186/s12890-020-1081-6>

58. Kebede B, Mamo G, Molla A. Association of Asthma Control and Metered-Dose Inhaler UseTechnique among Adult Asthmatic Patients Attending Outpatient Clinic, in Resource-Limited Country: A Prospective Study. *Hindawi Canadian Respiratory Journal* Volume 2019, Article ID 6934040, 6 pages <https://doi.org/10.1155/2019/6934040>

59. Zewudie A, Nigussie T, Mamo Y, Kumela K. Determinants of poorly controlled asthma among asthmatic patients in Jimma University Medical Center, Southwest Ethiopia: a case control study.. BMC Res Notes (2019) 12:525 <https://doi.org/10.1186/s13104-019-4571>.
60. Zelalem T, Tesfaye, Nebeyu T, Gebreselase, Boressa A, Horsa. Appropriateness of chronic asthma management and medication adherence in patients visiting ambulatory clinic of Gondar University Hospital: a cross-sectional study. World Allergy Organization Journal (2018) 11:18 <https://doi.org/10.1186/s40413-018-0196->.
61. S.Yimer,C.Holm-Hansen,T.Yimaldu, and G.Bjune, "Healthcare seeking among pulmonary tuberculosis suspects and patients in rural Ethiopia: a community-based study," BMC Public Health, vol.9, article 454, 2009.
62. Mebratie AD, Van de Poel E, Yilmaz, Abebaw D, Alemu G, Bedi AS: Healthcare-seeking behavior in rural Ethiopia: evidence from clinical vignettes. BMJopen2014, 4(2):e004020.doi:10.1136/bmjopen2013-004020 PMID:24525391.
63. Boulet LP. Influence of comorbid conditions on asthma. REVIEW ARTICLE. Eur Respir J 2009; 33: 897–906 DOI: 10.1183/09031936.00121308.
64. American Thoracic Society, Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. Am J Respir Crit Care Med 2000; 162: 2341–2351.
65. Woledesenbet MA, Mekonen SS, Melese L, Melaku Abegaz TM. Epidemiology of Depression and Associated Factors among Asthma Patients in Addis Ababa, Ethiopia. Hindawi Psychiatry Journal Volume 2018, Article ID 5934872, 7 pages <https://doi.org/10.1155/2018/5934872>.